Use of NEMS For EERE Policy Analysis

Presented to NREL Energy Analysis Seminar Series June 10, 2004

Frances Wood
OnLocation, Inc.
Energy Systems Consulting

Today's Discussion

- Brief overview of the National Energy Modeling System (NEMS)
- Use of NEMS by EERE for estimating program benefits
- Modeling enhancements for wind class representation and offshore wind
- Enhancements to distributed PV representation
- Extension to 2050
- Other NEMS policy analysis capabilities

NEMS Overview

- NEMS was built by EIA for creating its mid-term energy projections and for policy analyses.
- NEMS has a modular design organized by energy producing, consuming, and conversion sectors.

OnLocation Inc, Energy Systems Consulting

Page 3

Key Features of NEMS

- Annual simulation model to 2025
- Optimization techniques used for electricity capacity expansion and dispatch and petroleum refining
- Regional energy markets Census Divisions, NERC electricity regions, PADD regions, etc.
- Technology representation in most sectors of interest to EERE – residential, commercial, and transportation demand sectors, industrial heat and power, electricity supply and renewable energy

Use of NEMS for GPRA Benefits

- EERE uses NEMS and other tools to measure the benefits of its programs as part of their Government Performance and Results Act (GPRA) reporting
- NEMS provides a consistent economic framework
- Important for determining individual program and portfolio benefits
 - Programs may target similar markets and therefore interact
 - Energy efficiency and renewable energy deployment can lead to energy price reductions that in turn dampen the cost-effectiveness of the EERE technologies
- Alternative scenarios will be used this year to look at options value of EERE's R&D portfolio

OnLocation Inc, Energy Systems Consulting

Page :

GPRA Integrated Modeling Process

- The first step is the development of a Base Case
 - Most recent AEO modified to remove identifiable program impacts already included by EIA
 - For example, Million Solar Roof PV installations
 - Selected model enhancements made to better represent program target markets
- Representation of each of the 11 EERE programs
 - The goals for each program are represented within NEMS-GPRA to assess the benefits of their achievement
- Portfolio Case
 - All the programs are combined in a single case
 - Integrated impacts of Portfolio case are not equal to the sum of the individual programs due to interactions and feedbacks

NEMS Enhancements

- Commercial building shell index replaced with economic evaluation of individual efficiency measures (windows, insulation, etc.)
- Distributed generation modifications to improve stock accounting
- Wind module replaced with one that has more detail by wind class
- · Input and output displays for ease of use

OnLocation Inc, Energy Systems Consulting

Page :

Representation of R&D Programs

- R&D programs goals generally are represented by changing technology cost and performance characteristics.
 - Examples include: wind turbines, heat pump water heaters, hybrid vehicles
- In some cases analysis must be done off-line either due to insufficient technology information or lack of NEMS-GPRA detail
 - Site energy savings are then input into the model
 - Examples include: Most of the industrial sector R&D programs (Industries of the Future)

ıe 8

Representation of Standards

- Appliance standards are represented by eliminating availability of less efficient technologies in years after the standard implemented
- Residential building codes can be represented by eliminating less efficient shell packages, but codes have different levels of compliance and stringency by State.
 - For GPRA we rely on an offline analysis of the average heating and cooling savings and adoption rates
- Commercial building codes can be represented by requiring a minimum level of efficiency from the combination of shell measures

OnLocation Inc, Energy Systems Consulting

Page :

Representation of Deployment Activities

- Deployment programs often have adoption rate goals
- The Energy Star program is represented by lowering consumer hurdle rates for end uses targeted by the program to achieve the program adoption goals
 - Examples include residential lighting, refrigerators and water heaters.
- Weatherization savings estimated offline based on expected budget levels and past performance are implemented by reducing heating and cooling demands in residential buildings
- Industrial Best Practices savings are estimated offline and are subtracted from industrial energy demands

EERE Program Benefits

- · GPRA Metrics include
 - Non-renewable energy savings
 - Energy expenditures
 - Carbon emission reductions
 - · Oil savings
 - · Natural gas savings
 - EERE technology capacity and generation or displaced central station capacity
- Benefits are reported at the program level and for the Portfolio as a whole.

OnLocation Inc, Energy Systems Consulting

Page 1

FY05 Program Energy Savings

 Magnitude and timing of program savings vary significantly due to differing types and scope of activities.

OnLocation Inc, Energy Systems Consulting

FY05 Program and Portfolio Benefits

 By 2025, the EERE Portfolio is projected to decrease primary non-renewable energy by 10.4 quads, which represents 31 percent of the projected growth in energy demand from 2005.

Wind Module Enhancements

- Further detail added to NEMS regarding wind resources
 - Allows resource characterization (cost multipliers) to vary by wind class to accommodate
 - Different interconnection costs
 - Class 4 winds closer to load
 - Allows representation of low-wind speed turbine technology cost differences
- Offshore wind capability added

Wind Resources Representation in NEMS

- NEMS represents 3 wind classes within each region
- Currently each region's wind resource is characterized by 5 cost steps, independent of wind class
 - Higher class wind class sites assumed to be used first
- In modified version, resource multipliers (5 cost steps) applied by wind class, instead of for the regional resource as a whole
- Competition performed to determine lowest cost wind class each year

OnLocation Inc, Energy Systems Consulting

Page 15

Alternative Supply Steps

 In the revised version the resource multipliers are applied by wind class, not over the entire regional resource.

OnLocation Inc, Energy Systems Consulting

Reference Case Results 2025

• The new application of long-term multipliers is more restrictive, especially in the West.

OnLocation Inc, Energy Systems Consulting

Page 17

Projected Wind Capacity 2025

 In several regions, more than one wind resource is developed.

OnLocation Inc, Energy Systems Consulting

Low Wind Speed Turbine R&D Case

When R&D impacts are included, projected capacity increases substantially, especially for Class 4.

Offshore Wind

- We have also modified NEMS to include offshore wind resources
- First quick method was to increase onshore wind resource quantities at higher cost multiplier levels
 - · Difficult to reflect costs correctly over time
 - · Direct competition with onshore wind
- More correct method implemented where offshore wind added as another technology
 - · Allows offshore wind to compete directly with all potential generation sources
 - · Similar to onshore wind representation, but separate data streams
 - · Production tax credits can be represented for offshore wind only or for both onshore and offshore sites.

NEMS 2050 Extension

 Only selected NEMS modules were extended, primarily those with solar technology markets.

Key NEMS Solar Modifications

- The longer time frame and focus on solar led to several modifications of NEMS
- Distributed PV in residential and commercial buildings
 - · Modified algorithm for adoption rates
 - · Continuous rather than discrete functional form
 - Shift of one year in adoption rate to allow one year payback if very low cost
 - Increased average system size from 2kW to 4kW for residential and 10 kW to 100 kW for commercial, with a capability for change in capacity size over forecast period
 - Increased maximum penetration rates for single family homes and commercial buildings
 - · Added PV for multi-family homes
 - Added stock accounting with retirements

Key NEMS Solar Modifications (cont.)

- Solar water heat
 - Created competition for market share in new buildings between solar and electric water heat
 - Allowed greater replacement opportunity in existing homes
- Solar space heat
 - Redefined gas heat pumps to be solar with gas back up heat
- Concentrated Solar Power (CSP)
 - Reflected EERE's R&D goals including additional storage capability
 - · Increased capacity credit value

OnLocation Inc, Energy Systems Consulting

Page 2

Base Case Generation

 Coal dominates future generation under the High Renewable/High Efficiency Base Case.

OnLocation Inc, Energy Systems Consulting

OnLocation Inc, Energy Systems Consulting

Page 25

Carbon Value Case A case was created to roughly stabilize carbon emissions from the electricity and building sectors. 120 1400 Base Emissions Carbon Value (2001 \$/Ton) 1200 100 1000 80 Emissions with Carbon Value 60 600 40 20 200 0 Page 26 OnLocation Inc, Energy Systems Consulting

\$100 Carbon Value Case

 When a value for carbon is added (ramping up from zero in 2015 to \$100 in 2040), coal generation levels off and renewable generation increases substantially.

OnLocation Inc, Energy Systems Consulting

Page 27

New Generation Shares with \$100 Carbon

 Wind is the dominant new renewable in the early years, while solar and biomass gain additional shares as the technologies become more cost-effective.

OnLocation Inc, Energy Systems Consulting

Enhanced R&D Cost Goals

 Enhanced R&D accelerates the expected decline in cost for each of the solar technologies.

OnLocation Inc, Energy Systems Consulting

Solar Policy Case

- · Central Generation Policies
 - Implement federal production tax credit (PTC) for solar: Set at 1.8 cents/kWh in 2005 (with 10-year duration), inflation adjusted through 2020, then phased out between 2020 and 2030.
 - 10% federal investment tax credit (ITC) remains in place through 2050.
 - Accelerated depreciation remains in place though 2050.
- Distributed Generation/Thermal (Residential and Commercial) Policies
 - Implement federal ITC for for distributed PV, solar water heating, and solar space heating: Set at 30% in 2005, decline linearly to 10% in 2030, and then hold at 10% through 2050.
 - Average PV system capacity increases by 50% between 2005 and 2030.

R&D and Solar Policies Generation by Fuel

- With additional R&D and moderate policies, the solar share of generation increases to 23 percent by 2050.
- Distributed generation supplies 30 percent of demand by 2050.

R&D and Solar Policies Shares of New Generation

- With additional R&D and moderate policies, PV and CSP begin to capture a significant share of new generation after 2020.
- After 2035, distributed generation additions are over half of the total.

OnLocation Inc, Energy Systems Consulting

NEMS Policy Analysis Capabilities

- As illustrated in these examples, NEMS can be used for analysis of
 - R&D and technology deployment policies
 - · Investment and production tax credits
- NEMS can also be used for evaluating environmental policies, such as
 - SO₂, NO_x, mercury and carbon emission caps in the power sector
 - Economy-wide carbon caps or taxes
- · Portfolio generation standards (renewable or other)
- Efficiency standards (CAFE, appliance)

OnLocation Inc, Energy Systems Consulting

Page 33

More Information

- For more information on these analyses, visit the following web sites
 - GPRA Benefits Analysis
 http://www.eere.energy.gov/office_eere/
 gpra_estimates_fy05.html especially Chapter 4
 - Wind Model Enhancements
 April 20, 2004 Renewable Energy Modeling Series
 http://www.epa.gov/cleanenergy/pdf/wood_apr20.pdf
 - NEMS 2050 Extension
 NEMS Conference March 2004
 http://www.eia.doe.gov/oiaf/aeo/conf/pdf/wood.pdf

